Details of ssDNA annealing revealed by an HSV-1 ICP8–ssDNA binary complex
نویسندگان
چکیده
Infected cell protein 8 (ICP8) from herpes simplex virus 1 was first identified as a single-strand (ss) DNA-binding protein. It is essential for, and abundant during, viral replication. Studies in vitro have shown that ICP8 stimulates model replication reactions, catalyzes annealing of complementary ssDNAs and, in combination with UL12 exonuclease, will catalyze ssDNA annealing homologous recombination. DNA annealing and strand transfer occurs within large oligomeric filaments of ssDNA-bound ICP8. We present the first 3D reconstruction of a novel ICP8-ssDNA complex, which seems to be the basic unit of the DNA annealing machine. The reconstructed volume consists of two nonameric rings containing ssDNA stacked on top of each other, corresponding to a molecular weight of 2.3 MDa. Fitting of the ICP8 crystal structure suggests a mechanism for the annealing reaction catalyzed by ICP8, which is most likely a general mechanism for protein-driven DNA annealing.
منابع مشابه
ssDNA-dependent colocalization of adeno-associated virus Rep and herpes simplex virus ICP8 in nuclear replication domains.
The subnuclear distribution of replication complex proteins is being recognized as an important factor for the control of DNA replication. Herpes simplex virus (HSV) single-strand (ss)DNA-binding protein, ICP8 (infected cell protein 8) accumulates in nuclear replication domains. ICP8 also serves as helper function for the replication of adeno-associated virus (AAV). Using quantitative 3D coloca...
متن کاملRole of the herpes simplex virus helicase-primase complex during adeno-associated virus DNA replication.
A subset of DNA replication proteins of herpes simplex virus (HSV) comprising the single-strand DNA-binding protein, ICP8 (UL29), and the helicase-primase complex (UL5, UL8, and UL52 proteins) has previously been shown to be sufficient for the replication of adeno-associated virus (AAV). We recently demonstrated complex formation between ICP8, AAV Rep78, and the single-stranded DNA AAV genome, ...
متن کاملRNA binding and R-loop formation by the herpes simplex virus type-1 single-stranded DNA-binding protein (ICP8).
In an effort to decipher the molecular mechanisms of homologous recombination during herpes simplex virus type-1 replication, we recently demonstrated that the virus-encoded single-stranded (ss) DNA-binding protein (ICP8) promotes the salt-dependent assimilation of ssDNA into a homologous plasmid, resulting in the formation of a displacement loop. In this paper, the results presented show for t...
متن کاملThe 60-residue C-terminal region of the single-stranded DNA binding protein of herpes simplex virus type 1 is required for cooperative DNA binding.
ICP8 is the major single-stranded DNA (ssDNA) binding protein of the herpes simplex virus type 1 and is required for the onset and maintenance of viral genomic replication. To identify regions responsible for the cooperative binding to ssDNA, several mutants of ICP8 have been characterized. Total reflection X-ray fluorescence experiments on the constructs confirmed the presence of one zinc atom...
متن کاملHuman Rad52 binds and wraps single-stranded DNA and mediates annealing via two hRad52–ssDNA complexes
Rad52 promotes the annealing of complementary strands of DNA bound by replication protein A (RPA) during discrete repair pathways. Here, we used a fluorescence resonance energy transfer (FRET) between two fluorescent dyes incorporated into DNA substrates to probe the mechanism by which human Rad52 (hRad52) interacts with and mediates annealing of ssDNA-hRPA complexes. Human Rad52 bound ssDNA or...
متن کامل